

A PRIMER ON DIGITAL TWINS – WHAT WHY HOW? TEADE PUNTER DTA-WEBINAR, 20 APRIL 2022

EMR DIGITAL

IN ACADEMY

EUROPEAN UNION European Regional

Development Fund

Table of Contents

- Introduction
- Smart Industry
- What is a digital twin?
- Why digital twins?
- How to develop a digital twin?

Introduction

Social Distancing/Bartender robot HTSM RIGS project Fontys ICT, ENG, Jur, HRM VDL ETG, TSG, Bavaria, Fourtress Sw: Gazebo + ROS Hw: FEng Mechatronics https://www.ictinpractice.nl/projects/rigs/

Interaction Module RAAK CEC project

Sw: python, posenet ai Hw: Turtlebot3 + nvidia jetson <u>https://www.htesfontysict.nl/hum</u> <u>ans-work-with-</u> <u>robots/interaction-module/</u> Monitoring Robot PII HERE Technologies, Sorama, MWLC Sw: AT4 tracker, mqtt Hw: Sound camera, MWLC robot <u>https://www.htesfontysict.nl/modeling-</u> autonomous-robots/monitoring-robot/

Research Group HTES = High Tech Embedded Software

Centre of Expertise HTSM = High Tech Systems and Materials

Autonomous & adaptive robots	Digital twinning & systems	Applying materials	Energy generation & storage	Quantum, photonics, sensors & IoT	Diagnostics & testing
Intelligent robots, Embodied Al	AI & data engineering, System engineering, High tech system design Industrial IoT	Metal, polymers, thin film	Batteries, Solar/Wind/(Water) fuels	Quantum sensors, Photonics Networks & IoT	Diagnostic AI System integration

Industry 4.0 / Smart Industry

Example – condition-based monitoring

Digitale Fabriek van de Toekomst

https://ru-clip.net/video/daytBSS5ifY/uptimeworks-condition-monitoring.html

Industry 4.0 / Smart Industry

Monitor early, Conditionbased maintenance

Measure (rolls)

- Vibration
- Torsion
- Temperature

Digitale Fabriek van de Toekomst

OVATIEPROGRAMMA FABRIEK VAN DE TOEKOM

Euregio Meuse-Rhine EMR DIGITAL TWIN ACADEMY EUROPEAN UNION EUROPEAN UNION EUROPEAN UNION EUROPEAN EUR

Setup process roll with sensors, Eindhoven

Well-being of workers Preservation of resources, climate change and social stability.

https://ec.europa.eu/

What is a Digital Twin?

Simulation & twinning

Understanding the system

- Communication with customer
- Feasibility study

Warehouse simulation, Vanderlande Industries, 2009

Simulation & twinning

Virtualization enables system development, software-inthe-loop

- Improved communication and understanding
- Find problems/defects early; detect anomalies
- Efficiency gain

Fontys

Paperpath simulation, Oce / Canon, 2009

Reality as asset

Static, IT approach

Behavior

Why develop digital twins?

Why – predictive maintenance

Condition-based maintenance

Why – remote monitoring

Say you are monitoring machines around the world and you need to check and update the configuration with specialists

Why – cooperate in value chain

- Automated planning updates based on the availability of components.
- Suppliers watch the performance of the components and improve their quality.

Why – improve development

both visual realism and accurate physics

https://www.amazon.science/latest-news/at-amazon-roboticssimulation-gains-traction

Many roads

https://www.change2twin.eu/

AAS-road

Measure (rolls)

- Vibration
- Torsion
- Temperature

Develop an AAS - Dynamic information

European Regiona

Digitale Fabriek van de Toekomst

Euregio Meuse-Rhine

OVATIEPROGRAMMA FABRIEK VAN DE TOEKOM

ADEMY

Setup process roll with sensors, Eindhoven

Another (Fontys) road.

Also start with existing asset

Phases:

- Data logging
- Model the asset, look at data behavior
 - process mining
- Integrate model and reality

Digital Twin Development

(Punter, 2022)

Smart Industry Case Fontys

Mechatronic Transfer System, Fontys, BIC, Eindhoven

Smart Industry Case Fontys

Focus on transfer system

Stoppers (Pallet) -Layout Transfersystem

Mechatronic Transfer System, Fontys, BIC, Eindhoven

Interreg Euregio Meuse-Rhine

Software

EMR DIGITAL TWIN ACADEMY

Interreg Euregio Meuse-Rhine

EMR DIGITAL

TWIN ACADEMY Development Fund

EUROPEAN UNION

LECTORAAT

Software

{"timestamp": 1638527484.393459849, "data":{"topic":"HQ01", "message":{"type":"inputs or outputs","tag":"HQ01","value":true,"description":"","timestamp":155196 1064954}}{"timestamp": 1638527484.393679222.

Replay system, from a log

Interreg Euregio Meuse-Rhine **EMR DIGITAL** EUROPEAN UNION TWIN ACADEMY Development Fund

Twin V1.0

Process mining

ProductId	Timestamp	Activity	Comment
Product1	2022-04-14T08:19:45.235	>>Line	Enter production line
Product2	2022-04-14T08:19:55.846	>>Line	Enter production line
Product1	2022-04-14T08:20:01.745	>>StationA	Enter assembly station A
Product2	2022-04-14T08:21:01.987	>>StationB	Enter assembly station B
Product1	2022-04-14T08:21:05.245	StationA>>	Exit assembly station A
Product2	2022-04-14T08:21:07.087	StationB>>	Exit assembly station A
Product1	2022-04-14T08:21:08.243	>>StationB	Enter assembly station B
Product2	2022-04-14T08:21:10.319	>>StationC	Enter assembly station C
Product1	2022-04-14T08:21:12.162	StationB>>	Exit assembly station B
Product2	2022-04-14T08:21:14.255	StationC>>	Exit assembly station C
Product1	2022-04-14T08:21:15.305	>>StationC	Enter assembly station C
Product2	2022-04-14T08:21:20.746	Line>>	Exit production line
Product1	2022-04-14T08:21:23.005	StationC>>	Exit assembly station C
Product1	2022-04-14T08:21:30.664	Line>>	Exit production line

Rebuild the model by process mining, find workflows

(Punter, 2022)

Acknowledgements to Mark Stappers, Lucas Brouns, Lake Lakeman Remy Bos, Samual Jarvis, Casper Metsemakers, Arjan Vreugdenhil

https://www.htesfontysict.nl/digital-twin-academy/

https://www.youtube.com/watch?v=g2KI-XiXRZU

Contact: teade.punter@fontys.nl

